

Generative process in testing:	7	<u>rair</u>
To sample a future frame <i>J</i> from observation <i>I</i> :) Sample <i>z</i> from a prior distribution	•	Max
$\sim p_z(z) = N(0, I);$ 2) Given z, sample the intensity difference mage from $v \sim p_{\theta}(v I, z)$.	•	whe

Visual analogy:

Mode

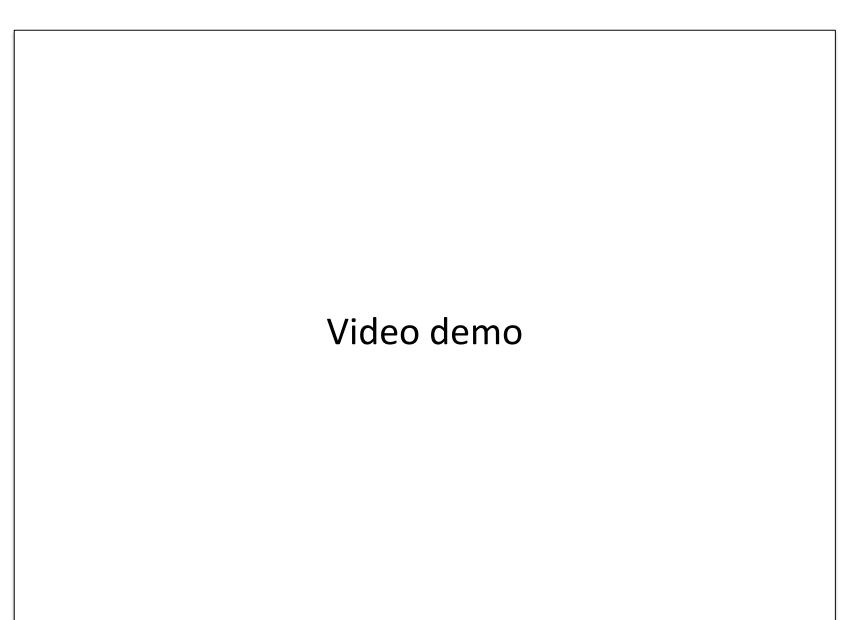
Shapes						
•	S.	T.	СТ.			
7	7.07	6.07	8.42			
6	12.37	10.36	10.58			
70	2.48	1.14	2.46			

aximize the marginal distribution:

$$\sum \log \Big| p_{\theta} \big(v^{(i)} \big| I^{(i)}, z \big) p_z(z) d \Big|$$

here $(I^{(i)}, v^{(i)})$ are training samples

Approximate the distribution by the variational upper


$$K_{L}(q_{\phi}(z|v^{(i)}, I^{(i)})||p_{z}(z)) + \frac{1}{L} \sum_{l=1}^{L} \left[\log p_{\theta}\left(v^{(i)}|z^{(i,l)}, I^{(i)}\right)\right]$$

	2					
				1	<u>k</u>	
	(a)		<u>,</u>	(b)		
el	spellcast	thrust	walk	slash	shoot	average
[Reed et al., 2015]	41.0	53.8	55.7	52.1	77.6	56.0

	*					U	_
Add [Reed et al., 2015]	41.0	53.8	55.7	52.1	77.6	56.0	-
Dis [Reed et al., 2015]	40.8	55.8	52.6	53.5	79.8	56.5	
Dis + Cls [Reed et al., 2015]	13.3	24.6	17.2	18.9	40.8	23.0	
Our Model	9.5	11.5	11.1	28.2	19.0	15.9	-

(c) Comparison with [Reed et al. 2015]

Video demo & motion vector visualization

References:

- G. Hinton and D. Camp. Keeping the neural networks simple by minimizing the description length of the weights, 1993
- 2. D. Kingma and M. Welling. Auto-encoding variational bayes, ICLR, 2014
- 3. C. Finn, I. Goodfellow, S. Levine. Unsupervised learning for physical interaction through video prediction, NIPS, 2016
- J. Walker, C. Doersch, and A. Gupta. An uncertain future: Forecasting from static images using variational autoencoders, ECCV, 2016
- B. Brabandere, X. Jia, T. Tuytelaars, and L. Gool. Dynamic filter networks, NIPS, 2016