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Idea 1: Probabilistic synthesis via conditional variational autoencoder:

Visual Dynamics
Future frame prediction:

- Predict future frame from current observation

- Ambiguity: one observed frame corresponds multiple possible future frames

Problem definition: probabilistic future frame synthesis

Task: sample all possible future frames given the current observed snapshot

Observed snapshot Two possible future frames

Network Structure

Encoding network ▲ꜚ ◑ȿ○ȟ╘:

Consists of (a) Motion encoder, which predicts the motion 
information ᾀfrom two frames.
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Synthesis network ▬Ᵽ○ȿ◑ȟ╘

Consists of (b) Kernel decoder, (c) Image encoder, (d) 
Cross convolution, and (e) Motion decoder:

Training Objective:
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Experiments

Synthetic dataset:

Visual analogy:

(c) Comparison with [Reed et al. 2015]

Visualization of learned feature maps:

http://visualdynamics.csail.mit.edu/

KL-divergence loss Reconstruction loss

Ὀ ή ᾀȿὺ ȟὍȿȿὔ ȟἓ ‗ẗὺ ὺ

Discussion

Video demo
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Training: use the whole 
network

Testing: only use the 
dashed part and 
randomly sampled z

Video demo & motion vector visualization

Idea 2: Synthesis by transforming segments:

Two naïve baselines:
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Current frame Future frame

Deterministic prediction

Fails to model the uncertainty of future

Future frame Future frame
Low dimension 

representation

Autoencoder

Only learns a prior distribution of the image

DL-divergence ensures the motion vector is low dimension

Training:
Å Maximize the marginal distribution:

ÌÏÇὴ ὺ Ὅ ȟᾀὴ ᾀὨᾀ

where Ὅ ȟὺ are training samples

Generative process in testing:

To sample a future frame ὐfrom observation Ὅ:
1) Sample ᾀfrom a prior distribution 

Úͯὴ ᾀ . ȟ); 

2) Given ᾀ, sample the intensity difference 

image from ὺͯ ὴ ὺȿὍȟᾀ.

3) Synthesize the future frame ὐ Ὅ ὺ.
Å Approximate the distribution by the variational upper 

bound:

Derivation of training objective:

Notation:
Å ή ᾀȿὺ ȟὍ is the variational distribution of ὴᾀȿὺȟὍ , defined by the encoding network.

Å ὴ is defined by the synthesis network.
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Å Ὀ ὔⱧȟⱭȿȿὔ ȟἓ ВÌÏÇ„ ‘ „ , Ὀ is minimized when ‘ πand „ ρ

Å Shown in [Hinton and Camp 1993], KL-divergence penalizes the information ᾀcarries, so it reduce its effective dimension
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The effective dimension of ᾀdecreases as ‗increases
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